物流设备

AI人工智能如何改变仓储物流和供应链

发布时间:2025/1/7 18:43:59   
中科白癜风医院微信 http://www.wzqsyl.com/m/

几天前和一位做AI的老大聊天,他说全球做人工智能的企业基本都不赚钱,但这并不妨碍人工智能成为最热门的投资热点,为什么,我们从仓储,分销和物流这个行业来来了解一下

人工智能在航运和物流中的应用

需求预测:需求预测依赖于历史数据,使用人工智能可以进一步加强对历史和实时数据的分析,提供准确的需求预测。有了更准确的需求预测,托运人可以优化库存管理、分派和劳动力计划,从而提高服务水平。麦肯锡在一份报告中表示,人工智能预测方法可以将供应链网络中的错误减少30-50%。

供应计划:供应计划是物流的重要组成部分。人工智能可以帮助基于实时数据的需求分析。企业可以动态调整其供应计划参数,以优化供应链流程,提高效率,并增加盈利能力。

仓储自动化:由于当前全球形势,供应链中对非接触式流程的需求不断增加,似乎推动了高级自动化业务流程的必要性。人工智能有可能彻底改变仓储领域的自动化。将机器人技术与人工智能相结合,机器人可以跟踪和定位库存,并执行通常需要额外劳动力来完成的挑选和包装功能。自动化带来了高效的资源分配,使劳动力能够做更多有价值的活动,而不是手工琐事。深度学习进一步促进了这些机器人的学习,使它们能够在部署它们的场景中自主地做出活动决定。

智能计算机视觉:深度学习和人工智能使先进的扫描、监控和自动化技术能够通过图像和视频可视化许多物流场景,并进行相应的直接操作。这改变了装货时货物的尺寸或破损检查、标签和堆叠安排。计算机视觉与深度学习结合在自动驾驶汽车上实现自动和智能导航,现在已成为现实。

工作流程自动化:工作流自动化是利用人工智能来简化复杂和手工的后台操作。在货运代理中,文档处理是一项乏味的工作,并且具有使用机器人过程自动化(RPA)和光学字符识别(OCR)进行自动化的巨大潜力。运输文件并非都采用标准格式,而这正是此类技术能够自动阅读和理解打印或手写文件的地方。这种工作流程自动化可以解放物流人员的大量工作时间,并分配他们做更多的增值活动。

预测物流:供应链上的不同接触点产生广泛的数据。更好的机器学习算法可以提取对决策至关重要的物流预测洞察力。人工智能可以帮助做出与产能规划、预测和网络优化相关的决策,从而简化运营并提高整体供应链绩效。人工智能广泛应用于动态路线优化、管理交付时间窗口、优化燃油消耗和负载能力利用率等最后一英里交付活动,从而推动供应链的数字化。

增强的货运跟踪:货运可见性数据对整个供应链的绩效至关重要。人工智能跟踪和跟踪功能有助于准确预测ETAs和ETDs。此外,对供应链中断、延误和航路风险发出警报的能力可以帮助企业提高灵活性,并采用备份措施,以避免重大损失。机器学习还可以帮助分析历史数据,以确定航运模式,考虑各种因素,如天气条件、季节性需求波动、贸易通道拥堵等。随着语音助手或聊天机器人的广泛使用,客户或客服人员可以在几秒钟内提取跟踪信息。

仓库里的人工智能(AI)和物联网(IoT)

很简单,是的,我们正处在仓库真正应用人工智能和物联网的时刻。两者都是强大的新工具,可以更好地使仓库和配送中心的活动跟上快速变化的供应链动态。

“不要被人工智能和物联网所迷惑,”NateBrown,CEOofEVS表示。“两者都被用来解决以前的问题。他们只是做得更好。物联网提供了以前无法获得的数据,这是更深层次的见解。人工智能分析微观决策,并优化到以前不可能达到的水平。”

HighJump首席技术官肖恩埃利奥特(SeanElliott)表示:“如果仓库里没有人工智能,物联网就毫无意义。”“你需要结合新的数据来源,即物联网,以及更好的解决方案,即人工智能,来理解数据,发展见解并根据这些知识采取行动。这两项技术对于改善运营性能至关重要。”

此外,专家们认为,这两种技术对于适应目前从预测驱动型向需求驱动型DCs(分销中心)的转变至关重要。

尽管如此,Softeon的首席营销官DanGilmore表示,这两种技术都还处于早期阶段。

一些公司尚未推出商业产品。其他公司正在试运行中。还有一些公司在短时间内提供了一种产品。展望未来,JDA及其合作伙伴已承诺在未来三年内投入5亿美元用于研发,销售/全球合作伙伴和联盟高级总监史蒂夫·西默曼(SteveSimmerman)说。

显然,人工智能和物联网正在敲仓库的门,您应该喜欢这个敲门声。

建立物联网

让我们面对现实吧,仓库和分销中心同事正面临前所未有的压力。

“订单一整天都在源源不断地涌来,挑战在于找出如何最好地及时处理这些订单,”曼哈顿联合公司(ManhattanAssociates)产品管理高级总监亚当克莱恩(AdamKline)说道。

他接着说,即使仓库管理系统(WMS)已经就位,这些决策也是根据既定规则、既定能力和既定资源做出的。然而,这些订单并不是静态的。“系统需要智能地平衡能力和资源,才能最大化利益,”Klin说

Gilmore说:“只有人工智能和物联网合作,才能根据当前情况临时做出决定。”

那么,这些物联网数据到底从何而来?很多已经在你的设施里了。

从传送带到自动引导车辆和自动存储系统等物料处理设备都接收和发送有关其活动的数据。从扫描仪到语音系统的手持设备也做同样的事情。

Epicor产品管理高级总监MarkJensen表示:“大多数设施都在引入越来越多的数据设备,这些设备正在发展成为一个新兴的物联网网络。”很多时候,简单的传感器提供了以前无法用于决策的信息。智能手机是这个新网络的一部分。

关于人的数据也很重要。卢卡斯系统公司(LucasSystems)的项目工程总监贾斯汀里特(JustinRitter)解释说:“人们在特定时刻在什么位置、他们在做什么,以及如何最好地利用数据,这些都很重要。”

正如曼哈顿的克莱恩所指出的,实时定位系统正在到位,以跟踪人们以及他们对特定任务的可用性。事实上,有几种类型的实时定位系统可用,包括智能手机、无源无线电信标和RFID。

“根据皮特最近的扫描结果,很多机构都知道他在哪里。但当你使用实时定位系统时,你就能随时知道皮特在哪里。

Gilmore补充说,还有人和机器人的问题。他称其为配对能力,可以让合适的人和合适的机器人使用物联网数据完成订单。吉尔摩补充道:“这是一个将地点,人和任务一起协同的问题。”“这里需要新的思维。

构建人工智能

LeanDNA首席执行官理查德莱博维茨(RichardLebovitz)表示:“尽管获取数据变得越来越简单,但大多数机构缺乏决定如何使用这些数据以及采取何种行动的能力。这一切都是要弥合预测和制造业实际情况之间的差距。”这就是人工智能的切入点。

EVS的Brown给出了仓库人工智能的基本定义。“它学习并对当前状态做出反应,而不仅仅是一套预先设定的规则,”他说。

HighJump公司的埃利奥特解释说,人工智能和物联网并不是一枚硬币的两面。“但它们确实存在共生关系。人工智能接收到的有关动作和互动的数据越多,它就越能了解如何适应当前条件,”他补充道。

虽然很多物联网数据来自四面围墙内,但以晚入站加载为例。JDA的Simmerman说:“DC会收到由控制塔管理的物联网信号的警报,负载将会延迟到达。”“人工智能获取这些信息,并确定最佳时间,释放和部署特定数量的劳动力来卸载卡车。人工智能还可以决定哪些货物应该直接用于订单或存储。这时,你对如何使分销中心最有效地运行有了一个新的可见性和智慧水平,”Simmerman说。

要做到这一点,确实需要物联网提供的数据粒度。卢卡斯的数据科学家GrahamYennie解释道:“数据粒度是让AI在新情况出现时进行学习的关键因素。”这种特殊形式的人工智能被称为机器学习

将物联网和人工智能结合在一起

物联网和人工智能在分销中心(DistributionCenter)还有更大的用途。这两种技术使得DC从预测驱动转变为需求驱动成为可能。也就是说,当它们与WMS、仓库执行系统甚至工作执行系统相结合时。LeanDNA的Lebovitz说,从预测到需求驱动的运营是DCs向前发展的一个巨大但绝对必要的支点。

这一切都是为了应对当前从制造和分销主导供应链的转变。越来越多的客户已经超越了低成本,供应链效率成为主要驱动因素。

因此,一系列公司正在研究、试点并全面整合人工智能和物联网在仓库运营中的应用。

卢卡斯系统(LucasSystems)和EVS等公司正在进行尽职调查,以决定如何将这两项技术与他们现有的软件包集成。卢卡斯系统公司预计将在明年春天深入进行beta测试。与此同时,EVS正在用其WMS包测试客户数据。

LeanDNA已经将人工智能与制造业务的库存分析结合起来。它的软件被一系列公司使用,通过连接到他们的企业资源规划(ERP)系统来简化操作。

机器人轨道和机器人技术是HighJump努力将技术与WMS整合的关键。试点项目正在两个地区进行。

Softeon的重点是跟踪工人及其活动和设备,比如使用无源无线电信标的移动机器人。机器人轨道也是一个重点。这两款软件都与Softeon的WMS集成,应该可以更快更好地做出决策。

物联网和人工智能都与曼哈顿(Manhattan)的仓库执行包集成在WMS中。订单流、机器人技术和分销控制都受益于近18个月前引入的功能。

Epicor的分销管理软件刚刚完成物联网的beta测试。同时,在ERP系统的虚拟代理中完全集成了AI。

一年多前,JDA收购了BlueYonder公司及其人工智能功能。这已经成为了JDA数字化预测分析策略的支柱,该策略旨在创建该公司正在开发的东西——一种自学习供应链的状态。物联网是其长期战略的一部分。控制塔、云计算和仓库任务处理尤为重要。

物联网和人工智能在仓库运营中的应用可能还处于早期阶段。但是发展的速度可能超乎您的预期。

机器人过程自动化(RPA,RoboticProcessAutomation))和智能过程自动化(IPA,IntelligentProcessAutomation)

四分之一的《财富》强企业将人工智能投资转向更普通的短期或战术IPA项目,“效率明显提高”,大约一半的人工智能平台提供商、全球系统集成商和管理服务提供商将在其投资组合中强调IPA。

基于这些IPA用例的成功,IDC预测,到年,75%的企业将把智能自动化嵌入到技术和流程开发中,使用基于人工智能的软件发现运营和体验洞察力,以指导创新。

到年,人工智能将成为参与很多业务,导致25%的人工智能解决方案作为“结果即服务(out

转载请注明:http://www.aideyishus.com/lkzp/7593.html

------分隔线----------------------------